Pumped storage hydropower (PSH) is a type of hydroelectric energy storage. It is a configuration of two water reservoirs at different elevations that can generate power as water moves down from one to the other (discharge), passing through a turbine. The system also requires power as it pumps water back into the upper reservoir (recharge).
Pumped storage hydropower plants play a key role in the future of energy, contributing to grid stabilization, renewable energy storage and reduced dependence on fossil fuels. Together with BESS systems, renewable energy storage in pumped storage power plants will be a strategic ally for a resilient, secure and sustainable energy system.
Pumped-storage hydroelectricity (PSH), or pumped hydroelectric energy storage (PHES), is a type of hydroelectric energy storage used by electric power systems for load balancing. A PSH system stores energy in the form of gravitational potential energy of water, pumped from a lower elevation reservoir to a higher elevation.
In the event of a power outage, a pumped storage plant can reactivate the grid by harnessing the energy produced by sending "emergency" water – which is kept in the upper reservoir for this very purpose – through the turbines. Pumped storage hydropower plants fall into two categories:
Storage hydropower plants, also called pumped storage plants, are facilities that produce electricity by storing water in an upper reservoir, then releasing it and running it through turbines at a lower level, thus generating electricity.
A dynamic energy storage solution, pumped storage hydro has helped ‘balance’ the electricity grid for more than five decades to match our fluctuating demand for energy. Pumped storage hydro (PSH) involves two reservoirs at different elevations.