For recyclers involved with the rapidly expanding lithium-ion (Li-ion) and lithium iron phosphate (LiFePO4) battery recycling market, there is an ongoing debate within the industry concerning the merits and pitfalls of dry versus wet (water-based) processing.
Although dry battery recycling systems are prevalent, these typically require the disassembly of packs or modules and discharge of the individual battery cells before further processing and can be at risk of thermal events.
“Dry battery recycling systems tend to be smaller to limit the volume of combustible material and the danger of thermal runaway, so may not always meet throughput needs enough to be profitable,” says Neuens.
To prevent spent LIBs from entering the black market and to create an organized recycling market, it is necessary to establish a battery-tracking mechanism. Each battery can be assigned an identification number, which can be uploaded into the tracking system throughout the end-of-life value chain to facilitate recycling development.
In the case of battery manufacturer responsibility, there are two recycling routes for retired LIBs. One is the collection by EV manufacturers, and the other is the collection by the battery leasing company.
Discharge, battery disassembly, and sorting are typically involved in the pretreatment of waste LIBs. Following pretreatment, the waste batteries can be broken down into various components such as aluminum and copper foils, separators, plastic, and others.