Abstract: This paper presents a comprehensive review of multiport converters for integrating solar energy with energy storage systems. With recent development of a battery as a viable energy storage device, the solar energy is transforming into a more reliable and steady source of power.
The basic unit of a solar PV generation system is a solar cell, which is a P‐N junction diode. The power electronic converters used in solar systems are usually DC‐DC converters and DC‐AC converters. Either or both these converters may be necessary depending on whether the solar panel is connected to a DC load, an AC load or an AC grid.
However, the power outputs of photovoltaic devices suffer from fluctuations due to the intermittent instinct of the solar radiation. Integrating solar cells and energystorage devices as self-powering systems may solve this problem through the simultaneous storage of the electricity and manipulation of the energy output.
Abstract: This chapter presents the important features of solar photovoltaic (PV) generation and an overview of electrical storage technologies. The basic unit of a solar PV generation system is a solar cell, which is a P‐N junction diode. The power electronic converters used in solar systems are usually DC‐DC converters and DC‐AC converters.
This review summarizes the research progress in the integration of new-generation solar cells with supercapacitors, with emphasis on the structures, materials, performance, and new design features. The current challenges and future prospects are discussed with the aim of expanding research and development in this field.
Most large conventional electrical grids can operate without significant storage of energy after it has been converted to electric energy. This is because the load‐generation balance is maintained in near real time through the control of the generated power, with frequency as the feedback signal.