The primary responsibility of the base station energy storage is to protect the power supply of the base station, so the dynamic backup capacity of the base station in real time will be considered in the future. Chen, X.; Lu, C.; Han, Y.: Power system frequency problem analysis and frequency characteristics research review.
With the large-scale integration of renewable energy into the grid, its randomness and intermittent characteristics will adversely affect the voltage, frequency, etc. of the new power system, and even cause partial system collapse. However, the above problems can be solved by configuring large-scale clustered energy storage in the new power system.
Although the power output of a single base station storage is limited, the combined regulation of large-scale base stations can have a significant meaning. Therefore, the base station energy storage can be used as FR resources and maintain the stability of the power system.
In [ 20 ], the energy saving strategy of base station is proposed considering the variability and complementarity of base station communication loads. This strategy helps the power system to cut peaks and fill valleys while reducing base station operating costs.
Finally, experiments and simulation analysis verify the rationality and applicability of the conclusions and methods of this paper. 1. Introduction In order to solve the instability problem caused by the grid connection of renewable energy to the power system, large-scale energy storage power stations have been widely used.
This paper discusses the current research status of the energy storage power station modeling and grid connection stability, and proposes the structure of the digital mirroring system of large-scale clustered energy storage power stations.