A lithium-ion capacitor (LIC or LiC) is a hybrid type of capacitor classified as a type of supercapacitor. It is called a hybrid because the anode is the same as those used in lithium-ion batteries and the cathode is the same as those used in supercapacitors. Activated carbon is typically used as the cathode.
Design of Lithium-Ion Capacitors In terms of LIC design, the process of pre-lithiation, the working voltage and the mass ratio of the cathode to the anode allow a difference in energy capacity, power efficiency and cyclic stability. An ideal working capacity can usually be accomplished by intercalating Li + into the interlayer of graphite.
Lithium-ion capacitors (LICs) display similar self-discharge behavior to lithium-ion batteries (LIB) at temperatures below 40 °C. However, LICs exhibit excellent discharge capacities at temperatures above 40 °C. Analysis of arc and differential scanning calorimetry (ARC and DSC) reveals the thermal behavior of LICs, which is characteristic of both lithium-ion batteries and electric double-layer capacitors. We report on the electrochemical performance of 500 F, 1100 F, and 2200 F lithium-ion capacitors containing carbonate-based electrolytes.
Lithium-ion capacitors offer superior performance in cold environments compared to traditional lithium-ion batteries. As demonstrated in recent studies, LiCs can maintain approximately 50% of their capacity at temperatures as low as -10°C under high discharge rates (7.5C).
However, in the present state of the art, both devices are inadequate for many applications such as hybrid electric vehicles and so on. Lithium-ion capacitors (LICs) are combinations of LIBs and SCs which phenomenally improve the performance by bridging the gap between these two devices.
This review will focus on the LIC developments as the main example of a hybrid capacitor, but it must be noted that there are many similarities between LICs, NICs and KICs. LIBs normally have high energy density (>150 W h kg −1) and have no memory impact as in conventional Ni-Cd/Ni-MH batteries [5, 6].