This energy received from the sun can be harnessed directly or indirectly using various technologies for thermal applications as well as for converting into electricity by the means of photovoltaic (PV) systems. Over the years the photovoltaic technology advanced a lot and the efficiency of solar cell has considerably improved.
This chapter provides a comprehensive overview of the key principles underlying PV technology, exploring the fundamental concepts of solar radiation, semiconductor physics, and the intricate mechanisms that facilitate the transformation of sunlight into a usable electrical power source.
Solar photovoltaic (PV) power generation is the process of converting energy from the sun into electricity using solar panels. Solar panels, also called PV panels, are combined into arrays in a PV system. PV systems can also be installed in grid-connected or off-grid (stand-alone) configurations.
Solar power is the conversion of sunlight into electricity, either directly using photovoltaic (PV), or indirectly using concentrated solar power (CSP). The research has been underway since very beginning for the development of an affordable, in-exhaustive and clean solar energy technology for longer term benefits.
The PV technology convert visible spectrum to electricity and thermal collectors use both infrared and visible spectrum for energy generation. So the energy generation from solar radiation can be in the form of electrical energy or thermal Energy. The various conversion paths of solar energy is described in the Fig.2
Highlights This paper reviews the progress made in solar power generation by PV technology. Performance of solar PV array is strongly dependent on operating conditions. Manufacturing cost of solar power is still high as compared to conventional power. Abstract