The degradation of a PV (photovoltaic) module is the term used to describe the steady decline in efficiency and output power of a solar panel over time as a result of numerous environmental influences, manufacturing flaws, and material degradation.
As photovoltaic penetration of the power grid increases, accurate predictions of return on investment require accurate prediction of decreased power output over time. Degradation rates must be known in order to predict power delivery. This article reviews degradation rates of flat-plate terrestrial modules and throughout the last 40years.
Utilizing solar PV to generate energy is not a simple operation due to degradation, which can result in a reduction in solar PV performance and efficiency [1, 2]. According to recent studies, the rate of degradation varies between 0.6% and 0.7% per year [3, 4].
Solar panel degradation occurs at a rate of 1% each year on average. Solar panels, like other technology, will produce less energy with time. The degradation rate results in a reduction in power production.
According to recent studies, the rate of degradation varies between 0.6% and 0.7% per year [3, 4]. Photovoltaic (PV) degradation can be both linear and non-linear depending on the underlying mechanisms causing the degradation.
While PV technology has been present since the 1970s, solar panel degradation has been studied mainly in the last 25 years. Research Institutes like NREL have estimated that appropriate degradation rates of solar panels can be set at 0.5% per year with current technology. What is the impact of solar panel degradation on your PV system?