The new energy storage charging pile system for EV is mainly composed of two parts: a power regulation system and a charge and discharge control system. The power regulation system is the energy transmission link between the power grid, the energy storage battery pack, and the battery pack of the EV.
On the one hand, the energy storage charging pile interacts with the battery management system through the CAN bus to manage the whole process of charging.
Based on the Internet of Things technology, the energy storage charging pile management system is designed as a three-layer structure, and its system architecture is shown in Figure 9. The perception layer is energy storage charging pile equipment.
This study explores the integration and optimization of battery energy storage systems (BESSs) and hydrogen energy storage systems (HESSs) within an energy management system (EMS), using Kangwon National University’s Samcheok campus as a case study.
It is possible to develop a more adaptable and sustainable energy system by combining hydrogen storage with battery storage. This integration facilitates the energy sector’s decarbonization and opens up new uses for hydrogen, such as in industrial processes, transportation, and as a source of synthetic fuels.
This integrated approach is crucial with the increasing use of renewable energy, where balancing supply and demand becomes more complex [19, 20, 21]. Improving grid power savings through the best possible utilization of combined battery and hydrogen storage systems is one of the main objectives of this research.