Despite this progress in using rare earth compounds for Li–S batteries, most work has centered on the cathode host and interlayer, with only a small portion covering lithium anode protection and electrolyte modification. In addition, the range of RE compounds selected as cathode hosts or interlayers remains quite narrow.
The most critical battery raw materials currently include lithium, cobalt, nickel, manganese and graphite. Demand for these raw materials is expected to increase significantly in the coming years, with the World Bank forecasting that demand for lithium in 2050 will be up to five times the level it was in 2018.
In addition, recently synthesized rare earths halide materials have high ionic conductivities (10−3 S/cm) influenced by the synthetic process and constituent. Their relatively simple synthetic method, high stability and deformability can be very advantageous for the promising applications in all solid state lithium ion batteries.
As framing elements or dopants, rare earths with unique properties play a very important role in the area of solid lithium conductors. This review summarizes the role of rare earths in different types of solid electrolyte systems and highlights the applications of rare-earth elements in all solid state batteries. 1. Introduction
Graphite, the mineral used in the anode, follows the cathode minerals. The subsection “Secondary Mineral Supply” discusses EV battery recycling as a potential supply option available for the five minerals. Each mineral subheading contains information on the element’s mineralization and geologic formation.
Some aspects of the supply and demand for the five critical minerals used in these common chemistries are considered in greater detail in “Critical Mineral Supply for EV Batteries.” The five minerals covered in that section are lithium, cobalt, manganese, nickel, and graphite.