For example, if a battery has a capacity of 3 amp-hours and can be discharged in 1 hour, its discharge rate would be 3 amps. The battery discharge rate is the amount of current that a battery can provide in a given time. It is usually expressed in amperes (A) or milliamperes (mA).
In this case, the discharge rate is given by the battery capacity (in Ah) divided by the number of hours it takes to charge/discharge the battery. For example, a battery capacity of 500 Ah that is theoretically discharged to its cut-off voltage in 20 hours will have a discharge rate of 500 Ah/20 h = 25 A.
As the discharge rate ( Load) increases the battery capacity decereases. This is to say if you dischage in low current the battery will give you more capacity or longer discharge . For charging calculate the Ah discharged plus 20% of the Ah discharged if its a gel battery. The result is the total Ah you will feed in to fully recharge.
The charging conditions of the battery: charging rate, temperature, cut-off voltage affect the capacity of the battery, thus determining the discharge capacity. Method of determination of battery capacity: Different industries have different test standards according to the working conditions.
Maximum Continuous Discharge Current – The maximum current at which the battery can be discharged continuously. This limit is usually defined by the battery manufacturer in order to prevent excessive discharge rates that would damage the battery or reduce its capacity.
The capacity of a battery or accumulator is the amount of energy stored according to specific temperature, charge and discharge current value and time of charge or discharge.