Battery storage is becoming an increasingly popular addition to solar energy systems. Two of the most common battery chemistry types are lithium-ion and lead acid. As their names imply, lithium-ion batteries are made with the metal lithium, while lead-acid batteries are made with lead. How do lithium-ion and lead acid batteries work?
Lead Acid Batteries Lead-acid batteries consist of lead dioxide (PbO2) and sponge lead (Pb) plates submerged in a sulfuric acid electrolyte. The electrochemical reactions between these materials generate electrical energy.
Lead-acid batteries and lithium batteries are now widely used in life. Let’s take a look at the working principles of lead-acid batteries and lithium batteries. When the sulfuric acid dissolves, its molecules break up into positive hydrogen ions (2H+) and sulphate negative ions (SO4—) and move freely.
Although capacity figures can differ based on battery models and brands, lithium-ion battery technology has been extensively tested and shown to possess a considerably higher energy density than lead-acid batteries. Energy Efficiency: Lithium-ion batteries are more efficient, losing less energy during charge/discharge cycles.
Here we look at the performance differences between lithium and lead acid batteries The most notable difference between lithium iron phosphate and lead acid is the fact that the lithium battery capacity is independent of the discharge rate.
In the case of a lead-acid battery, the chemical reaction involves the conversion of lead and lead dioxide electrodes into lead sulfate and water. The sulfuric acid electrolyte in the battery provides the medium for the transfer of electrons between the electrodes, resulting in the generation of electrical energy.