This paper studies various energy storage technologies and their applications in microgrids addressing the challenges facing the microgrids implementation. In addition, some barriers to wide deployment of energy storage systems within microgrids are presented.
While a microgrid is in the on-grid mode, itcan receive energy from the main grid, and the energy storage system should make the longest cycle life as its optimal goal, and choose the appropriate type of energy storage system according to the maximum power and fluctuation of PV/wind power.
Microgrids are a means of deploying a decentralized and decarbonized grid. One of their key features is the extensive presence of renewable-based generation, which is intermittent by nature. Because of this kind of variability, the application of appropriate energy storage systems is mandatory.
deployment of microgrids. Microgrids offer greater opportunities for mitigate the energy demand reliably and affordably. However, there are still challenging. Nevertheless, the ene rgy storage system is proposed as a promising solution to overcome the aforementioned challenges. 1. Introduction power grid.
Concerning the storage needs of microgrids, electrochemical technologies seem more adapted to this kind of application. They are competitive and available in the market, as well as having an acceptable degree of cost-effectiveness, good power, and energy densities, and maturity. The modularity of electrochemical technologies is another advantage.
Structure of typical microgrid energy management system. A microgrid has two operation modes, namely on-grid and off-grid operation. When a microgrid is detected to be islanding, or it needs to operate independently according to prevailing situation, it should rapidly disconnect from the public grid to switch into the off-grid operation mode.