N-Type technology revolutionizes solar cells with higher efficiency, reduced degradation, and stability, promising superior performance and sustainability in solar energy applications.
N-type cell technology can be subdivided into heterojunction (HJT), TOPCon, IBC and other technology types. Currently, PV cell manufacturers mostly choose TOPCon or HJT to pursue mass production. The theoretical efficiency of N-type TOPCon cells can reach 28.7%, and the theoretical efficiency of heterojunction cells can reach 27.5%.
N-type cells have many advantages, including high conversion efficiency, high bifacial rate, low temperature coefficient, no light decay, good weak light effect, and longer carrier life. N-type cell technology can be subdivided into heterojunction (HJT), TOPCon, IBC and other technology types.
N-Type technology shines in this regard, offering remarkable resistance to common degradation mechanisms that affect solar cells. Light Induced Degradation (LID) and Potential Induced Degradation (PID) are two phenomena that can significantly reduce the performance of P-Type solar cells over time.
N-Type silicon cells offer a significant advantage over their P-Type counterparts due to their resilience against Light Induced Degradation (LID). LID can significantly impair the performance of solar panels by reducing their efficiency as they are exposed to sunlight over time.
This is the fundamental difference between N-type cells and P-type cells, and because of this, the open-circuit voltage and short-circuit current of N-type cells are greatly improved, resulting in higher cell conversion efficiency.