The electrical design of the battery pack is associated with fundamental electrical elements. These elements are: Busbars, Contactors, Fuses, pre-charge resistors, current sensors, HV (High Voltage) and LV (Low Voltage) Connectors, and wiring harnesses. This will cover: For all of these components we need to consider:
The primary components of a battery pack are the battery modules. The battery modules contain the lithium-ion cells and are usually designed in such a way that their module terminal voltage is below 60 V, and hence they can be handled without additional and expensive safety precautions (see Section 10.2.1).
HV battery packs for battery electric vehicles (BEVs) are characterized by high energy densities and high energy contents with low power densities. Figure 10.1 shows a schematic illustration of a battery pack and its components, which are necessary to fulfill the vehicle requirements. Figure 10.1.
For those transitioning from academia to industry or anyone new to this dynamic field, it’s essential to grasp the fundamental components of power batteries. Today, we’ll explore the three most crucial elements: cells, battery modules, and battery packs. 1. Cells: The Building Blocks
Types of high voltage batteries Lithium-ion batteries are widely used due to their high energy density and lightweight design. They are commonly found in smartphones, laptops, and electric vehicles. These batteries can store a lot of energy in a compact size, which makes them ideal for portable electronics.
Voltage: Voltage is the measure of electrical force. High-voltage batteries have higher voltage than standard batteries, which means they can provide more power to devices. The voltage is determined by the battery’s type and number of cells. Battery Cells: A high-voltage battery consists of multiple cells connected in series.