This review discusses the latest advancements in the field of novel materials for solar photovoltaic devices, including emerging technologies such as perovskite solar cells. It evaluates the efficiency and durability of different generations of materials in solar photovoltaic devices and compares them with traditional materials.
The polymers/organic solar PV cells can also be categorized into dye-sensitized organic solar PV cells (DSSC), photoelectrochemical solar PV cells, plastic (polymer) and organic photovoltaic devices (OPVD) with the difference in their mechanism of operation , , .
Figure 7. The photovoltaic (PV) market development in China, Germany, Japan and the USA from 1990 to 2017 (Data source: IEA. PVPS. National Survey Report of PV Power Applications). By the end of 2009, the cumulative PV installed capacity in China was only 300 MW.
Semiconductor materials ranged from “micromorphous and amorphous silicon” to quaternary or binary semiconductors, such as “gallium arsenide (GaAs), cadmium telluride (CdTe) and copper indium gallium selenide (CIGS)” are used in thin films based solar PV cells , , .
The different physical principles are associated with the operation of different solar PV cells. However, the all well performing solar PV cells possess similar I-V characteristics and can be compared or characterized with each other on behalf of four factors viz. VOC, ISC, FF and PCE. 5. Comparative analysis of solar PV cell materials
Thin wafers which were taken from an especially grown continuous crystal are used to form m-crystalline silicon solar PV cells. Silicon material is first melted and then poured into a mould to form p-crystalline silicon solar PV cells.