Various application domains are considered. Energy storage is one of the hot points of research in electrical power engineering as it is essential in power systems. It can improve power system stability, shorten energy generation environmental influence, enhance system efficiency, and also raise renewable energy source penetrations.
Energy storage systems help to bridge the gap between power generation and demand and are useful for systems with high variability or generation-demand mismatch.
Energy storage is used to facilitate the integration of renewable energy in buildings and to provide a variable load for the consumer. TESS is a reasonably commonly used for buildings and communities to when connected with the heating and cooling systems.
Energy storage is utilized for several applications like power peak shaving, renewable energy, improved building energy systems, and enhanced transportation. ESS can be classified based on its application . 6.1. General applications
The integrated storage system is designed to cover 100 % of the demand with the energy generated by the PV system during the summer. During the rest of the year a little additional energy has to be purchased from the grid.
This chapter presents an introduction to the Energy Storage Systems (ESS) used in the present power system. Nowadays, renewable energy sources–based generating units are being integrated with the grid as they are green and clean sources of energy and also address environmental concerns.