A battery pack is an integral unit assembled from multiple battery modules. It is used to store and provide electrical energy. It is a higher-level component in the battery system. 1. Battery pack structure It usually consists of several battery modules, connectors, battery BMS, cooling system, electrical interface, and casing. 2.
In the battery pack, to safely and effectively manage hundreds of single battery cells, the cells are not randomly placed in the power battery shell but orderly according to modules and packages. The smallest unit is the battery cell. A group of cells can form a module. Several modules can be combined into a package.
Cells: The actual batteries. These can be any type, such as lithium-ion, nickel-metal hydride, or lead-acid. Battery Management System (BMS): This is the brain of the battery pack. It monitors the state of the batteries to optimize performance and ensure safety. Connectors: To link the batteries together.
The most prevalent types of battery packs include: Lithium-ion (Li-ion) Battery Packs: Widely used in consumer electronics, electric vehicles, and energy storage systems, Li-ion battery packs offer high energy density, lightweight design, and rechargeable capabilities.
A battery pack's voltage is the sum of the individual cell voltages. For example, a battery pack containing six 1.5 V cells would be rated at 9 V. Manufacturers typically specify the battery's nominal voltage, although its actual discharge voltage can vary depending on the battery's charge and current.
The following battery characteristics must be taken into consideration when selecting a battery: 1) Type See primary and secondary batteries page. 2) Voltage The theoretical standard cell voltage can be determined from the electrochemical series using Eo values: Eo (cathodic) – Eo (anodic) = Eo (cell) This is the standard theoretical voltage.