Aluminum electrolytic capacitors are (usually) polarized electrolytic capacitors whose anode electrode (+) is made of a pure aluminum foil with an etched surface. The aluminum forms a very thin insulating layer of aluminum oxide by anodization that acts as the dielectric of the capacitor.
A few examples are "aluminum electrolytic capacitor" or "tantalum capacitor." The anode in the aluminum electrolytic capacitor is made from a high-purity aluminum foil with an aluminum oxide thin film dielectric on its surface.
This guide covers the application of polar, non-solid aluminum electrolytic capacitors, which are those aluminum electrolytic capacitors featuring a wet, aqueous electrolyte with separator membranes such as cellulosic papers between two aluminum foils.
Aluminum electrolytic capacitor construction delivers colossal capacitance because etching the foils can increase surface area more than 100 times and the aluminum-oxide dielectric is less than a micrometer thick. Thus the resulting capacitor has very large plate area and the plates are intensely close together.
The anode of an aluminum electrolytic capacitor is an aluminum foil of extreme purity. The effec-tive surface area of this foil is greatly enlarged (by a factor of up to 200) by electrochemical etch-ing in order to achieve the maximum possible capacitance values.
The grown oxide layer, resulting from the solute and the solvent (electrolyte), greatly controls the performance of the aluminum electrolytic capacitor. The component materials generally used are as shown in Table 2. Topics on principles of ELNA aluminum electrolytic capacitors。
Aluminum electrolytic capacitors are made by layering the electrolytic paper between the anode and cathode foils, and then coiling the result. The process of preparing an electrode facing the etched anode foil surface is extremely difficult.
OverviewElectrical parametersBasic informationMaterialsProductionStylesHistoryReliability, lifetime and failure modes
The electrical characteristics of capacitors are harmonized by the international generic specification IEC 60384-1. In this standard, the electrical characteristics of capacitors are described by an idealized series-equivalent circuit with electrical components that model all ohmic losses, capacitive and inductive parameters of an electrolytic capacitor: