Objective of compensation is to achieve stable operation when negative feedback is applied around the op amp. Miller - Use of a capacitor feeding back around a high-gain, inverting stage. Miller capacitor only Miller capacitor with an unity-gain buffer to block the forward path through the compensation capacitor. Can eliminate the RHP zero.
In addition, a better understanding of the internals of the op amp is achieved. The minor-loop feedback path created by the compensation capacitor (or the compensation network) allows the frequency response of the op-amp transfer function to be easily shaped.
It is observed that as the size of the compensation capacitor is increased, the low-frequency pole location ω1 decreases in frequency, and the high-frequency pole ω2 increases in frequency. The poles appear to “split” in frequency.
Abstract: Series capacitive compensation method is very well known and it has been widely applied on transmission grids; the basic principle is capacitive compensation of portion of the inductive reactance of the electrical transmission, which will result in increased power transfer capability of the compensated transmissible line.
Compensation of the output-buffer dead-zone region is provided by Q18 and Q19. Output-current limiting and short-circuit protection is imple-mented by Q15 and Q21–Q25. And of course, the frequency compensation is accomplished by the 30 pF capacitor around Q16 and Q17, as discussed in Section II. Fig. 45.
Miller capacitor only Miller capacitor with an unity-gain buffer to block the forward path through the compensation capacitor. Can eliminate the RHP zero. Miller with a nulling resistor. Similar to Miller but with an added series resistance to gain control over the RHP zero.
The compensation of asynchronous motor can be done individually or in groups. Individual compensation can be performed with direct connection to the capacitor bank (figure 1.a) or by …
The compensation of asynchronous motor can be done individually or in groups. Individual …