Battery Energy Storage Systems (BESS) play a fundamental role in energy management, providing solutions for renewable energy integration, grid stability, and peak demand management. In order to effectively run and get the most out of BESS, we must understand its key components and how they impact the system’s efficiency and reliability.
A battery energy storage system (BESS) or battery storage power station is a type of energy storage technology that uses a group of batteries to store electrical energy.
The primary responsibility of the base station energy storage is to protect the power supply of the base station, so the dynamic backup capacity of the base station in real time will be considered in the future. Chen, X.; Lu, C.; Han, Y.: Power system frequency problem analysis and frequency characteristics research review.
The structure of base station provides conditions for energy storage to assist in power system frequency regulation. Although the power output of a single base station storage is limited, the combined regulation of large-scale base stations can have a significant meaning.
Battery storage can be used for short-term peak power and ancillary services, such as providing operating reserve and frequency control to minimize the chance of power outages. They are often installed at, or close to, other active or disused power stations and may share the same grid connection to reduce costs.
The corresponding powers of different operating states are 2.3 kW, 3 kW, 3.5 kW, and 4 kW, respectively. The nominal capacity of the base station energy storage is 20 kWh, and the number of the base station in each operating state is 500. The SOC values of the base station obey normal distribution between 0 and 1 in each operating states.