One provision is storing energy electrochemically using electrochemical energy storage devices like fuel cells, batteries, and supercapacitors ( Figure 1) having a different mechanism of energy storage but have electrochemical resemblances.
Modern electrochemical energy storage devices include lithium-ion batteries, which are currently the most common secondary batteries used in EV storage systems. Other modern electrochemical energy storage devices include electrolyzers, primary and secondary batteries, fuel cells, supercapacitors, and other devices.
The electrochemical storage system involves the conversion of chemical energy to electrical energy in a chemical reaction involving energy release in the form of an electric current at a specified voltage and time. You might find these chapters and articles relevant to this topic.
Electrochemical energy storage/conversion systems include batteries and ECs. Despite the difference in energy storage and conversion mechanisms of these systems, the common electrochemical feature is that the reactions occur at the phase boundary of the electrode/electrolyte interface near the two electrodes .
For electrochemical energy storage, the key parameters are specific energy and specific power. Other important factors include the ability to charge and discharge a large number of times, retain charge for long periods, and operate effectively over a wide range of temperatures.
The complexity of modern electrochemical storage systems requires strategies in research to gain in-depth understandings of the fundamental processes occurring in the electrochemical cell in order to apply this knowledge to develop new conceptual electrochemical energy storage systems.