The photovoltaic effect is a process that generates voltage or electric current in a photovoltaic cell when it is exposed to sunlight. It is this effect that makes solar panels useful, as it is how the cells within the panel convert sunlight to electrical energy. The photovoltaic effect was first discovered in 1839 by Edmond Becquerel.
The photovoltaic effect occurs in solar cells. These solar cells are composed of two different types of semiconductors - a p-type and an n-type - that are joined together to create a p-n junction. To read the background on what these semiconductors are and what the junction is, click here.
Photovoltaic is pivotal for harnessing solar energy. It holds the secret to converting sunlight into electrical power. Understanding how the PV effect works provides a clearer picture of the underlying principles behind solar power. It also helps us appreciate the vast potential of solar technology.
Photovoltaic (PV) effect is known as a physical process in which that a PV cell converts the sunlight into electricity. When a PV cell is subject to the sunlight, the absorbed amount of light generates electric energy while remaining sunlight can be reflected or passed through.
The main distinction is that the term photoelectric effect is now usually used when the electron is ejected out of the material (usually into a vacuum) and photovoltaic effect used when the excited charge carrier is still contained within the material.
When a PV cell is subject to the sunlight, the absorbed amount of light generates electric energy while remaining sunlight can be reflected or passed through. The electrons in the atoms of the PV cell are energized by the energy of the absorbed light.
In addition to the direct photovoltaic excitation of free electrons, an electric current can also arise through the Seebeck effect. When a conductive or semiconductive material is heated by absorption of electromagnetic radiation, the heating can lead to increased temperature gradients in the semiconductor material or differentials between materials. These thermal differences in turn may generate a voltage because the electron energy levels are shifted differently in different are…