The photovoltaic effect is based on the creation of an electric current in a material, usually a semiconductor, upon light irradiation. When sunlight irradiates the solar cell, some photons are absorbed and excite the electrons, or other charge carriers, in the solar cell.
Furthermore, Multiple researchers have conducted reviews on diverse cooling technologies that enhance the performance of solar cells. For instance, a review paper by Ghadikolaei provides an overview of various cooling technologies and their impact on the performance of commercially available photovoltaic (PV) cells (Anon (2002)).
PV cell efficiency increases with solar irradiance, as the greater number of photons associated with higher solar irradiance creates more electron–hole pairs and consequently more current in the photovoltaic cell.
In the international renewable energy production frame, photovoltaics (PV) is a well-established technology, which aims to produce electric energy from the sun radiation . Above 90% of the current photovoltaic production is based on silicon (Si) solar cells. However, typical commercial solar cells have an average efficiency of around 15%.
The photovoltaic sector is now led by silicon solar cells because of their well-established technology and relatively high efficiency. Currently, industrially made silicon solar modules have an efficiency between 16% and 22% (Anon (2023b)).
The efficiency of photovoltaic solar collector deteriorates with increase in cell temperature, which is mostly affected by solar radiation intensity rather than ambient temperature, as incident solar radiations cannot be fully converted into electricity and unconverted solar radiation heats up the photovoltaic cell and increase its temperature.