In 2017, lithium iron phosphate (LiFePO 4) was the most extensively utilized cathode electrode material for lithium ion batteries due to its high safety, relatively low cost, high cycle performance, and flat voltage profile.
Synthesis and characterization of Li [ (Ni0. 8Co0. 1Mn0. 1) 0.8 (Ni0. 5Mn0. 5) 0.2] O2 with the microscale core− shell structure as the positive electrode material for lithium batteries J. Mater. Chem., 4 (13) (2016), pp. 4941 - 4951 J. Mater.
This mini-review discusses the recent trends in electrode materials for Li-ion batteries. Elemental doping and coatings have modified many of the commonly used electrode materials, which are used either as anode or cathode materials. This has led to the high diffusivity of Li ions, ionic mobility and conductivity apart from specific capacity.
Despite their wide range of applications in lithium ion batteries, cobalt-based cathode materials are restricted by high cost and lack of thermal stability. Manganese-based materials allow 3-D lithium ion transport due to their cubic crystal structure. Manganese materials are cheap yet have several limitations.
The cathode material is a crucial component of lithium ions in this system and stable anode material can withstand not only lithium metal but also a variety of cathode materials [, , , ]. In 1982, Godshall showed for the first time the use of cathode (LiCoO 2) in lithium-ion batteries, setting a new standard in the field .
The cathode is another core component of a lithium ion battery. It is also designated by the positive electrode. As it absorbs lithium ion during the discharge period, its materials and characteristics have a great impact on battery performance. For that reason, the elemental form of lithium is not stable enough.