This mini-review discusses the recent trends in electrode materials for Li-ion batteries. Elemental doping and coatings have modified many of the commonly used electrode materials, which are used either as anode or cathode materials. This has led to the high diffusivity of Li ions, ionic mobility and conductivity apart from specific capacity.
The development of large-capacity or high-voltage positive-electrode materials has attracted significant research attention; however, their use in commercial lithium-ion batteries remains a challenge from the viewpoint of cycle life, safety, and cost.
This has led to the high diffusivity of Li ions, ionic mobility and conductivity apart from specific capacity. Many of the newly reported electrode materials have been found to deliver a better performance, which has been analyzed by many parameters such as cyclic stability, specific capacity, specific energy and charge/discharge rate.
The cathode materials of lithium batteries have a strong oxidative power in the charged state as expected from their electrode potential. Then, charged cathode materials may be able to cause the oxidation of solvent or self-decomposition with the oxygen evolution. Finally, these properties highly relate to the battery safety.
Obtained electrode material shows improved specific capacity of 215 mA h g−1, excellent cyclic stability without any capacity fading even after 1000 cycles at 1 C and good rate capability with specific capacity of 140 mA h g−1 at 20 C (Fig. 8 a,b).
The anode and cathode electrodes play a crucial role in temporarily binding and releasing lithium ions, and their chemical characteristics and compositions significantly impact the properties of a lithium-ion cell, including energy density and capacity, among others.