Heat storage by increasing the temperature of the material known as sensible heat storage. Materials used for an efficient sensible heat storage system should have high specific heat capacity, long term stability in terms of thermal cycling and should be compatible to the container material in which storage takes place .
It is worth noting that using sensible and latent heat storage materials (SHSMs and phase change materials (PCMs)) for thermal energy storage mechanisms can meet requirements such as thermal comfort in buildings when selected correctly. 1. Introduction
Sensible heat storage is in the form of rise in the temperature of PCM which is a function of the specific heat capacity and mass of the material. The materials generally used are water, pebbles, rocks, concrete and sand etc.
The experimental study on the preparation of high temperature (>500 °C) sensible heat storage materials (SHS) was conducted through the means of sintering method, in which vanadium tailings after carbothermic reduction used as the main matrix, graphite as the thermal conductivity modifier, and clay as the auxiliary material.
For liquid sensible heat storage media, materials with low melting temperatures, high decomposition temperatures and low costs are preferred; on the other hand, the melting and decomposition temperatures do not need to be considered for solid sensible heat storage media.
The liquid sensible heat storage material can be majorly classified into 4 types, namely- water (fit for 25–90°C operating temperature range), mineral oils (operating temperatures up to 400°C), molten salts (varying between 200 and 900 °C operating range), and liquid metals and alloys (up to 1600°C operating temperature).