A lithium-titanate battery is a modified lithium-ion battery that uses lithium-titanate nanocrystals, instead of carbon, on the surface of its anode. This gives the anode a surface area of about 100 square meters per gram, compared with 3 square meters per gram for carbon, allowing electrons to enter and leave the anode quickly.
Lithium titanate (Li 4 Ti 5 O 12) has emerged as a promising anode material for lithium-ion (Li-ion) batteries. The use of lithium titanate can improve the rate capability, cyclability, and safety features of Li-ion cells.
However, there’s a critical difference between lithium titanate and other lithium-ion batteries: the anode. Unlike other lithium-ion batteries — LFP, NMC, LCO, LMO, and NCA batteries — LTO batteries don’t utilize graphite as the anode. Instead, their anode is made of lithium titanate oxide nanocrystals.
Lithium titanate batteries are considered the safest among lithium batteries. Due to its high safety level, LTO technology is a promising anode material for large-scale systems, such as electric vehicle (EV) batteries.
High Rate Capability: LTO batteries can deliver high power output due to their ability to facilitate rapid ion movement. This characteristic makes them ideal for applications requiring quick bursts of energy. Safety Features: Lithium titanate’s chemical properties enhance safety.
The operation of a lithium titanate battery involves the movement of lithium ions between the anode and cathode during the charging and discharging processes. Here’s a more detailed look at how this works: Charging Process: When charging, an external power source applies a voltage across the battery terminals.