The Battery Thermal Management System of a vehicle must be a structurally lightweight compact system, easily packed and positioned in the vehicle such that readily available for maintenance purposes.
Each battery thermal management system (BTMS) type has its own advantages and disadvantages in terms of both performance and cost. For instance, air cooling systems have good economic feasibility but may encounter challenges in efficiently dissipating heat during periods of elevated thermal stress.
Battery thermal management (BTM) is pivotal for enhancing the performance, efficiency, and safety of electric vehicles (EVs). This study explores various cooling techniques and their impacts on EV battery optimization. Improved materials aid in heat dissipation enhancement. Computational models and simulation tools are utilized for BTM in EVs.
3. EV battery thermal management systems (BTMS) The BTMS of an EV plays an important role in prolonging the li-ion battery pack’s lifespan by optimizing the batteries operational temperature and reducing the risk of thermal runaway.
Professionals and engineers have significantly progressed in developing various thermal management techniques to optimize battery performance. Active cooling systems, including liquid cooling, air cooling, refrigeration-based cooling, thermoelectric cooling, and forced convection cooling, have been explored in previous studies.
Effectively managing temperature extremes is crucial for ensuring the overall safety and reliability of EV batteries. Addressing safety considerations in BTM involves incorporating thermal management into testing protocols, introducing standards tailored for alpine regions, and emphasizing the importance of the entire battery life cycle .