Consequently, the integration of RES into the power system can pose an adverse impact and reduce the reliability of the user service. To this extent, Energy Storage Systems (ESS) are nowadays integrated into the power system to smooth the amount of bulk power generation and mostly, to mitigate the intermittency of RES.
The sharp and continuous deployment of intermittent Renewable Energy Sources (RES) and especially of Photovoltaics (PVs) poses serious challenges on modern power systems. Battery Energy Storage Systems (BESS) are seen as a promising technology to tackle the arising technical bottlenecks, gathering significant attention in recent years.
Energy Storage is a DER that covers a wide range of energy resources such as kinetic/mechanical energy (pumped hydro, flywheels, compressed air, etc.), electrochemical energy (batteries, supercapacitors, etc.), and thermal energy (heating or cooling), among other technologies still in development .
Such a transition is expected to be achieved with the use of Energy Storage, which is able to transform the buildings into more predictable power sources and, therefore, ensure the security and stability of the power system by minimising uncontrollable excess PV production injection.
It was highlighted that Energy Storage is important to handle fluctuations incurred by RE production, power and voltage smoothing, as well as for energy management, frequency regulation, peak shaving, load levelling, seasonal storage, and standby generation during faults.
In the absence of Energy Storage, the amount of power generation in a conventional power grid must be drastically scaled up or down (dependent on the occasion) to meet demand, resulting in all of the negative issues associated with the inefficient use of power units.