The positive electrode is an important component that influences the performance of lithium-ion battery. Material development is underway to improve the high energy density and durability against charge/discharge cycles.
It is an ideal insertion material for long-life lithium-ion batteries, with about 175 mAh g −1 of rechargeable capacity and extremely flat operating voltage of 1.55 V versus lithium. LiFePO 4 in Fig. 3 (d) is thermally quite stable even when all of lithium ions are extracted from it .
It is also possible to use metallic lithium as a negative electrode to achieve high energy and power density. Assembled with solid-state electrolyte, all-solid-state batteries offer a potential solution to the safety problem and increase the energy density of lithium-ion batteries.
On this page, we introduce the applications related to the positive electrode, negative electrode, separator, electrolyte, and battery cell. The positive electrode is an important component that influences the performance of lithium-ion battery.
Lithium-ion batteries comprise a positive electrode, negative electrode, and electrolyte, with the electrolyte being one of the core materials. Most of the electrolyte materials used in commercial lithium-ion batteries comprise organic solvents, lithium salts, and additives.
Lithium-ion batteries consist of two lithium insertion materials, one for the negative electrode and a different one for the positive electrode in an electrochemical cell. Fig. 1 depicts the concept of cell operation in a simple manner . This combination of two lithium insertion materials gives the basic function of lithium-ion batteries.