A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage. Research progress of vanadium battery with mixed acid system: A review. An overview of chemical and mechanical stabilities of polymer electrolytes membrane.
Vanadium redox flow battery (VRFB) energy storage systems have the advantages of flexible location, ensured safety, long durability, independent power and capacity configuration, etc., which make them the promising contestants for power systems applications.
Among all the energy storage devices that have been successfully applied in practice to date, the flow batteries, benefited from the advantages of decouple power and capacity, high safety and long cycle life, are thought to be of the greatest potentiality for large scale energy storage applications , .
A high-performance all-iron non-aqueous redox flow battery comparative study of Nafion series membranes for vanadium redox flow batteries J. Membr. Sci., 510 ( 2016), pp. 18 - 26 Enhanced cycle life of vanadium redox flow battery via a capacity and energy efficiency recovery method
Effects of operating temperature on the performance of vanadium redox flow batteries. Titanium nitride nanorods array-decorated graphite felt as highly efficient negative electrode for iron–chromium redox flow battery. The effects of design parameters on the charge-discharge performance of iron-chromium redox flow batteries.
J. Renew. Sustain. Energy. 2014; 6 Broad temperature adaptability of vanadium redox flow battery—Part 1: Electrolyte research. Electrochim. Acta. 2016; 187: 525-534 Densely quaternized fluorinated poly (fluorenyl ether)s with excellent conductivity and stability for vanadium redox flow batteries.