Hydrogen also has higher energy storage density than lithium ion batteries, both in terms of energy stored per unit weight and energy stored per unit volume. At Garrett Motion, we generally believe that lighter, smaller vehicles are better candidates for battery electric powertrains, while heavier, larger vehicles are better suited for fuel cells.
Dianna researched the energy density of batteries versus hydrogen fuel cells. Energy density is the energy in watts per kilogram of weight. By that factor hydrogen has an energy density of 35,000 watts per kilogram, while lithium-ion batteries have a density of just 200 watts per kilogram.
By that factor hydrogen has an energy density of 35,000 watts per kilogram, while lithium-ion batteries have a density of just 200 watts per kilogram. A wind turbine farm | AFP Photo/Jean-Francois Monier/Getty Images By that measure, hydrogen fuel cells have a big advantage over batteries.
Batteries and hydrogen-producing electrolysers are the two important technologies in storage. So let us look at Hydrogen vs Battery Storage Comparing the two technologies, Battery has been ahead as higher production volumes have reduced price of Li-ion batteries significantly.
Compact and Lightweight: Hydrogen’s high energy density means that it can store a large amount of energy in a smaller space. This characteristic enables the design of vehicles that are both more compact and lighter than battery-electric vehicles (BEVs). Hydrogen-powered vehicles can potentially offer better performance and efficiency.
Now let us look at Hydrogen and batteries in a little detail Regarding hydrogen we focus on power-to-gas facilities (eletrolysers), which are used to produce green hydrogen, and on the fuel cell, which produces electrical energy from hydrogen. Hydrogen fuel cells generate electricity by combining hydrogen and oxygen.