Figure 3 demonstrates a structure of a cylindrical lithium-ion battery cell. The components in the cylindrical cell can be classified into three major groups: a jellyroll, current connectors, and safety devices. The rest of the document is organized as follows. A jellyroll of a positive electrode, a negative electrode and separators is introduced.
The cylindrical cells have high energy density, high power, as well as high performance and long calendar life. The purpose of this document is to introduce a structure of a cylindrical lithium-ion cell. Figure 3 demonstrates a structure of a cylindrical lithium-ion battery cell.
The structure of a lithium-ion battery is complex and consists of several key components. The outermost layer is the casing, which contains the internal components and protects them from external damage. Inside the casing are two electrodes – a positive cathode and a negative anode – that are separated by an electrolyte.
Cylindrical Lithium-ion Batteries have been used in many electronic devices. The electrochemical cell of the batteries consists of a layer of positive electrode, a layer of negative electrode and two layers of separator. To assemble the electrochemical cell into a case of the battery, these layers are rolled up to make a jellyroll.
Another essential part of a lithium-ion battery that is formed of lithium metal oxides is the cathode. The capacity, functionality, and safety of the battery are significantly impacted by the cathode material selection. Typical cathode components consist of:
Figure 2 shows cylindrical lithium-ion batteries in a laptop and a power tool. For an electric vehicle, the battery system of the Tesla roadster is comprised of 6,831 cylindrical lithium-ion cells (Eberhard). The cylindrical cells have high energy density, high power, as well as high performance and long calendar life.