Battery storage is becoming an increasingly popular addition to solar energy systems. Two of the most common battery chemistry types are lithium-ion and lead acid. As their names imply, lithium-ion batteries are made with the metal lithium, while lead-acid batteries are made with lead. How do lithium-ion and lead acid batteries work?
Lead Acid Batteries Lead-acid batteries consist of lead dioxide (PbO2) and sponge lead (Pb) plates submerged in a sulfuric acid electrolyte. The electrochemical reactions between these materials generate electrical energy.
Lithium-ion batteries also have a longer lifespan than lead-acid batteries. Thus, when considering all the factors, lithium-ion batteries are better than lead-acid batteries. However, lead-acid batteries still have their own advantages. They are less expensive than lithium-ion batteries and can be used for high-current applications.
Both lead-acid batteries and lithium-ion batteries are rechargeable batteries. As per the timeline, lithium ion battery is the successor of lead-acid battery. So it is obvious that lithium-ion batteries are designed to tackle the limitations of lead-acid batteries.
Lead-acid batteries consist of lead dioxide (PbO2) and sponge lead (Pb) plates submerged in a sulfuric acid electrolyte. The electrochemical reactions between these materials generate electrical energy. This technology has been in use for over a century, making it one of the most established battery technologies available.
Recyclable: These batteries are highly recyclable, making them an environmentally friendly option. Disadvantages: Heavy and bulky: Lead acid batteries are heavy and take up significant space, which can be a limitation in specific applications.