They also intend to effect the potential advancements in storage of energy by advancing energy sources. Renewable energy integration and decarbonization of world energy systems are made possible by the use of energy storage technologies.
The development of energy storage technology has been classified into electromechanical, mechanical, electromagnetic, thermodynamics, chemical, and hybrid methods. The current study identifies potential technologies, operational framework, comparison analysis, and practical characteristics.
Throughout this concise review, we examine energy storage technologies role in driving innovation in mechanical, electrical, chemical, and thermal systems with a focus on their methods, objectives, novelties, and major findings. As a result of a comprehensive analysis, this report identifies gaps and proposes strategies to address them.
Energy storage technologies have the potential to reduce energy waste, ensure reliable energy access, and build a more balanced energy system. Over the last few decades, advancements in efficiency, cost, and capacity have made electrical and mechanical energy storage devices more affordable and accessible.
Investing in research and development for better energy storage technologies is essential to reduce our reliance on fossil fuels, reduce emissions, and create a more resilient energy system. Energy storage technologies will be crucial in building a safe energy future if the correct investments are made.
Some key observations include: Energy Storage Capacity: Sensible heat storage and high-temperature TES systems generally offer higher energy storage capacities compared to latent heat-based storage and thermochemical-based energy storage technologies.