This article presents an overview of the existing PV energy conversion systems, addressing the system configuration of different PV plants and the PV converter topologies that have found practical applications for grid-connected systems.
Grid-connected PV systems enable consumers to contribute unused or excess electricity to the utility grid while using less power from the grid. The application of the system will determine the system’s configuration and size. Residential grid-connected PV systems are typically rated at less than 20 kW.
The different solar PV configurations, international/ national standards and grid codes for grid connected solar PV systems have been highlighted. The state-of-the-art features of multi-functional grid-connected solar PV inverters for increased penetration of solar PV power are examined.
Grid-interactive solar PV inverters must satisfy the technical requirements of PV energy penetration posed by various country's rules and guidelines. Grid-connected PV systems enable consumers to contribute unused or excess electricity to the utility grid while using less power from the grid.
Particularly at high PV penetration levels, PV systems should maintain grid connectivity through reactive power injection in reaction to voltage faults to prevent instigating extreme incidents, such as blackouts. To further reduce the cost of energy, it is necessary to enhance both dependability and efficiency.
A smart grid technology is designed to achieve a high penetration of photovoltaic (PV) systems into homes and businesses, it is an intelligent system capable of sensing system overloads and rerouting power to prevent or minimize a potential outage of power over the grid.