The fundamental approach involves understanding the nominal voltage and capacity of the battery. The formula for lead-acid battery kWh is: markdown kWh = Voltage x Capacity (in Ah) It’s crucial to consider the efficiency factor when calculating to enhance accuracy.
To calculate it, we consider the sum of the cost of batteries + transportation and installation costs (multiplied by the number of times the battery is replaced during its lifetime). The sum of these costs is divided by the net consumption of the system (50kWh per cycle, 365 cycles per year, 8.2 years of use).
The costs of delivery and installation are calculated on a volume ratio of 6:1 for Lithium system compared to a lead-acid system. This assessment is based on the fact that the lithium-ion has an energy density of 3.5 times Lead-Acid and a discharge rate of 100% compared to 50% for AGM batteries.
The results show that in both 100% PV and PV-diesel hybrid systems, the use of lead-acid or Li-ion batteries results in different sizing of the economic optimum system. In other words, if the type of battery is changed, to achieve the economic optimum the entire system must be resized.
The lead-acid battery performance is comparatively stable but reduces with the passage of time. Temperature correction factor: The battery cells capacity is generally provided for a standardized temperature which is 25oC and if it varies somewhere with the installation temperature, a correction factor is needed to implement.
The formula for lead-acid battery kWh is: markdown kWh = Voltage x Capacity (in Ah) It’s crucial to consider the efficiency factor when calculating to enhance accuracy. Lithium-ion batteries, prevalent in electric vehicles and portable electronics, have a different approach to kWh calculation.
To calculate it, we consider the sum of the cost of batteries + transportation and installation costs (multiplied by the number of times the battery is replaced during its lifetime). The sum of these costs is divided by the net consumption of the …