Multilayer ceramic capacitors (MLCCs) for energy storage applications have received increasing attention due to the advantages of ultralow equivalent series inductance, equivalent series resistance, good frequency characteristics, strong voltage overload ability, and stable operability at high temperatures.
The use of multilayer ceramic chip capacitors in consumer electronic devices began with pocket radios in the 1970s. Originally, they were developed for use in spacecraft—where small size and durability were paramount—and their manufacturing process is very different from other types of capacitors.
Significant advances have been achieved in the manufacturing technology of high volumetric multilayer ceramic capacitors (MLCs) comprised of hundreds of dielectric layers less than 3 μm in thickness. A capacitor consists of a BaTiO 3 -based X7R ceramic and nickel internal electrodes.
Under these circumstances, the principal developments in the multilayer ceramic capacitors (MLCs) industry are miniaturization, improvement of volumetric efficiency, cost reduction, improvement in reliability, and the design of new products with improved performance.
Consequently, multilayer ceramic chip capacitors require advanced nanotechnologies. TDK has achieved the utmost in thinness by embracing technologies to micronize and disperse dielectric and nickel particles that form the internal electrodes at nanometer scales. Dielectric sheets are thin, brittle, and easily fractured.
There are two types of multilayer ceramic chip capacitors: low (Class I) and high (Class II) dielectric constant types, differentiated by their temperature characteristics.