The energy density of lithium-ion batteries falls under the range 125-600+ Wh/L whereas, for lead acid batteries, it is 50-90 Wh/L. This drastic variation is due to the fact that lead acid batteries are much heavier than lithium-ion batteries, which in turn results in less energy density. Lead acid batteries also need more space to fit in.
Disadvantages: Heavy and bulky: Lead acid batteries are heavy and take up significant space, which can be a limitation in specific applications. Limited energy density: They have a lower energy density than lithium-ion batteries, resulting in a lower capacity and shorter runtime.
One of the most significant advantages of lithium-ion batteries is their high energy density. They can store more energy in a smaller and lighter package compared to lead-acid batteries. This characteristic makes them ideal for applications where space and weight are critical, such as in electric vehicles and portable electronics.
Lead-acid batteries are significantly heavier than their lithium-ion counterparts, which can be a disadvantage in applications where weight is a critical factor. Their bulkiness can also limit their use in portable devices. The cycle life of lead-acid batteries is considerably shorter, typically ranging from 300 to 1,500 cycles.
There’s also the risk of the battery exploding in certain cases. To keep this is check, the battery has a protection circuit to ensure that the voltage and the current are well within the safe limits. This additional circuit significantly adds to the cost of the battery. These were just the basic pros and cons of lithium-ion batteries.
However, lithium-ion batteries defy this conventional wisdom. According to data from the U.S. Department of Energy, lithium-ion batteries can deliver an energy density of around 150-200 Wh/kg, while weighing significantly less than nickel-cadmium or lead-acid batteries offering similar capacity.