To efficiently design functional electrolytes for lithium batteries, it is particularly important to understand the relative solvating ability of each individual organic solvent, because most of the electrolyte systems are comprised of two or more electrolyte solvents.
In advanced polymer-based solid-state lithium-ion batteries, gel polymer electrolytes have been used, which is a combination of both solid and polymeric electrolytes. The use of these electrolytes enhanced the battery performance and generated potential up to 5 V.
High safety and stable wide-temperature operation are essential for lithium metal batteries (LMBs). Herein, we designed an amide-based eutectic electrolyte composed of N-methyl-2,2,2-trifluoroacetamide (NMTFA) and lithium difluoro (oxalato)borate, enabling LMBs’ wide-operating temperature range and fast-charging performance.
Commercial lithium battery electrolytes are composed of solvents, lithium salts, and additives, and their performance is not satisfactory when used in high cutoff voltage lithium batteries. Electrolyte modification strategy can achieve satisfactory high-voltage performance by reasonably adjusting the types and proportions of these three components.
Although the ion–solvent complex model is well established to probe the electrolyte stability and afford rational strategies for electrolyte design, only a mono solvent in lithium-ion solvation shells was previously considered.
Lithium-ion battery technology is viable due to its high energy density and cyclic abilities. Different electrolytes are used in lithium-ion batteries for enhancing their efficiency. These electrolytes have been divided into liquid, solid, and polymer electrolytes and explained on the basis of different solvent-electrolytes.