Abstract: Series capacitive compensation method is very well known and it has been widely applied on transmission grids; the basic principle is capacitive compensation of portion of the inductive reactance of the electrical transmission, which will result in increased power transfer capability of the compensated transmissible line.
A capacitor bank is very essential equipment of an electrical power system. The power required to run all the electrical appliances is the load as useful power is active power. The active power is expressed in kW or MW.
Shunt Capacitor Definition: A shunt capacitor is defined as a device used to improve power factor by providing capacitive reactance to counteract inductive reactance in electrical power systems. Power Factor Compensation: Shunt capacitors help improve the power factor, which reduces line losses and improves voltage regulation in power systems.
Control of Voltage – In series capacitor, there is an automatic change in Var (reactive power) with the change in load current. Thus the drops in voltage levels due to sudden load variations are corrected instantly. The location of the series capacitor depends on the economic and technical consideration of the line.
There are mainly two categories of capacitor bank according to their connection arrangements. Shunt capacitor. Series capacitor. The Shunt capacitor is very commonly used. Q is required KVAR. P is active power in KW. cosθ is power factor before compensation.
Load division increases the power transfer capability of the system and reduced losses. Control of Voltage – In series capacitor, there is an automatic change in Var (reactive power) with the change in load current. Thus the drops in voltage levels due to sudden load variations are corrected instantly.