This document provides an overview of the lead acid battery manufacturing process. It discusses the key steps which include alloy production, grid casting, paste mixing and pasting, plate curing, and assembly. The alloy production process involves preparing mother alloy and KL-alloy from reclaimed lead using furnaces.
The lead battery is manufactured by using lead alloy ingots and lead oxide It comprises two chemically dissimilar leads based plates immersed in sulphuric acid solution. The positive plate is made up of lead dioxide PbO2 and the negative plate with pure lead.
A lead-acid battery has electrodes mainly made of lead and lead oxide, and the electrolyte is a sulfuric acid solution. When a lead-acid battery is discharged, the positive plate is mainly lead dioxide, and the negative plate is lead. The lead sulfate is the main component of the positive and negative plates when charging.
During the charging process, the cycle is reversed, that is, lead sulphate and water are converted to lead, lead oxide and electrolyte of sulphuric acid by an external charging source. This process is reversible, which means lead acid battery can be discharged or recharged many times.
In applications, a nominal 12V lead-acid battery is frequently created by connecting six single-cell lead-acid batteries in series. Additionally, it can be incorporated into 24V, 36V, and 48V batteries. Further, the lead acid manufacturing process has been discussed in detail. Lead Acid Battery Manufacturing Equipment Process 1.
An early manufacturer of lead–acid batteries was Henri Tudor (from 1886). In the 1930s, gel electrolyte batteries for any position were developed, and in the 1970s, the valve-regulated lead–acid battery (often called "sealed") was developed, including modern absorbed glass mat types, allowing operation in any position.