The energy (measured in joules) stored in a capacitor is equal to the work required to push the charges into the capacitor, i.e. to charge it. Consider a capacitor of capacitance C, holding a charge + q on one plate and − q on the other.
Thus, the storage capacitance mainly depends on the size of the metal plates, distance between the plates, and the material type of the dielectric medium used. It can be noted that the energy being stored in a capacitor is directly proportional to the capacity and the square of the applied voltage across the terminals of the electrochemical cell.
It consists of two electrical conductors that are separated by a distance. The space between the conductors may be filled by vacuum or with an insulating material known as a dielectric. The ability of the capacitor to store charges is known as capacitance. Capacitors store energy by holding apart pairs of opposite charges.
The capacitance C of a capacitor is defined as the ratio of the maximum charge Q that can be stored in a capacitor to the applied voltage V across its plates. In other words, capacitance is the largest amount of charge per volt that can be stored on the device: C = Q V
It can be noted that the energy being stored in a capacitor is directly proportional to the capacity and the square of the applied voltage across the terminals of the electrochemical cell. The capacity of the capacitor is directly proportional to the distance between the two terminals (or electrodes).
Capacitance tells us how much electrical charge a capacitor can store per unit of voltage. It quantifies the ability of a capacitor to hold and release energy. In simpler terms, it measures the “size” of a capacitor’s storage tank for electrical charge. The capacitance of a capacitor is measured in a unit called the farad.
OverviewHistoryTheory of operationNon-ideal behaviorCapacitor typesCapacitor markingsApplicationsHazards and safety
In electrical engineering, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. The capacitor was originally known as the condenser, a term still encountered in a few compound names, such as the condenser microphone. It is a passive electronic component with two terminals.