The lithium battery discharge curve is a curve in which the capacity of a lithium battery changes with the change of the discharge current at different discharge rates. Specifically, its discharge curve shows a gradually declining characteristic when a lithium battery is operated at a lower discharge rate (such as C/2, C/3, C/5, C/10, etc.).
An accurate lithium-ion battery model not only effectively improves the accuracy of state of charge (SOC) and state of health (SOH) estimation, but also enhances the simulation effectiveness when formulating the vehicle control strategy.
The establishment of lithium-ion battery models is fundamental to the effective operation of battery management systems. The accuracy and efficiency of battery simulation models ensure precise parameter identification and state estimation.
The Bayesian algorithm is often used for parameter identification in electrochemical models. In , a Bayesian parameter identification framework for lithium-ion batteries was presented, wherein 15 parameters were identified within a pseudo-two-dimensional model.
The lithium battery charging curve illustrates how the battery’s voltage and current change during the charging process. Typically, it consists of several distinct phases: Constant Current (CC) Phase: In this initial phase, the charger applies a constant current to the battery until it reaches a predetermined voltage threshold.
Lithium-ion batteries exhibit dynamic characteristics during constant-current intermittent charging, so the parameters of the equivalent circuit model can be obtained from the voltage response curve.