Fast charging is critical for the adoption of electric vehicles (EV’s), but higher current charging typically comes at the expense of battery life. Multistage constant current (MCC), pulse charging, boost charging, and variable current profiles (VCP) are among the fast charging methods used to reduce charging time without impacting battery life.
Experiments confirmed that charging at high currents has a huge impact, increasing the lifespan of the average test battery by 50%. It also deactivated a much higher percentage of lithium up front – about 30%, compared to 9% with previous methods – but that turned out to have a positive effect.
In this paper, the impact of high constant charging current rates on the charge/discharge efficiency in lead acid batteries was investigated upon, extending the range of the current regimes tested from the range [0.5A, 5A] to the range [1A, 8A].
At higher constant charging current rates the battery charges more effectively and this does not only apply to the Vanbo Battery (battery Sample 01) that was tested before but it was also true for the Winbright battery (battery sample 02) tested too.
One of the most frequently cited concerns about Level 3, or DC fast charging, is that using fast chargers too much can damage an electric car’s battery, leading to a loss of battery capacity and range over time.
The test results demonstrate that high-power charging significantly impacts the durability and thermal safety of the high-capacity lithium batteries. In particular, the capacity fading rate can reach up to 30% only after 100 charge cycles depending on the battery type.