For enormous scale power and highly energetic storage applications, such as bulk energy, auxiliary, and transmission infrastructure services, pumped hydro storage and compressed air energy storage are currently suitable.
Energy storage is utilized for several applications like power peak shaving, renewable energy, improved building energy systems, and enhanced transportation. ESS can be classified based on its application . 6.1. General applications
Various application domains are considered. Energy storage is one of the hot points of research in electrical power engineering as it is essential in power systems. It can improve power system stability, shorten energy generation environmental influence, enhance system efficiency, and also raise renewable energy source penetrations.
From Tables 14 and it is apparent that the SC and SMES are convenient for small scale energy storage application. Besides, CAES is appropriate for larger scale of energy storage applications than FES. The CAES and PHES are suitable for centered energy storage due to their high energy storage capacity.
Using an energy storage system (ESS) is crucial to overcome the limitation of using renewable energy sources RESs. ESS can help in voltage regulation, power quality improvement, and power variation regulation with ancillary services . The use of energy storage sources is of great importance.
Koohi-Kamali S, Tyagi V, Rahim N A, Panwar N L (2013) Energy storage technologies as the solution for reliable operation of smart power systems: A review. Renew. Sustain. Energy Rev DOI: 10.1016/j.rser.201 3.03.056