With the increasing exhaustion of the traditional fossil energy and ongoing enhanced awareness of environment protection, research works on electrochemical energy storage (EES) devices have been indispensable.
Summary of electrochemical energy storage deployments. Li-ion batteries are the dominant electrochemical grid energy storage technology. Characteristics such as high energy density, high power, high efficiency, and low self-discharge have made them attractive for many grid applications.
Since the publication of the first Energy Storage Safety Strategic Plan in 2014, there have been introductions of new technologies, new use cases, and new codes, standards, regulations, and testing methods. Additionally, failures in deployed energy storage systems (ESS) have led to new emergency response best practices.
While modern battery technologies, including lithium ion (Li-ion), increase the technical and economic viability of grid energy storage, they also present new or unknown risks to managing the safety of energy storage systems (ESS). This article focuses on the particular challenges presented by newer battery technologies.
Electrochemical energy storage includes various types of batteries that convert chemical energy into electrical energy by reversible oxidation-reduction reactions. Batteries are currently the most common form of new energy storage deployed because they are modular and scalable across diverse applications and geographic locations.
Another long-term benefit of disseminating safety test information could be baselining minimum safety metrics related to gas evolution and related risk limits for creation of a pass/fail criteria for energy storage safety testing and certification processes, including UL 9540A.