The battery manufacturing process is a complex sequence of steps transforming raw materials into functional, reliable energy storage units. This guide covers the entire process, from material selection to the final product’s assembly and testing.
The manufacturing process of lithium-ion batteries consists largely of 4 big steps of electrode manufacturing, cell assembly, formation and pack production, in that order. Each step employs highly advanced technologies. Here is an image that shows how batteries are produced at a glance. STEP 1.
Battery module and pack assembly Individual cells are then grouped into modules and assembled into battery packs. This step involves: Module Assembly: Cells are connected in series or parallel configurations to achieve the desired voltage and capacity.
In principle, two different forming methods are applicable for prismatic cell cases made of aluminum: deep draw or impact extrusion. Both methods are combined with wall ironing to come to the final geometry and reach the thin walls as specified and in tolerance.
This process is about making modular batteries with manufactured battery cells and putting them into a pack. First, battery cells are fixed side by side in a module case. The cells are connected and when a cover is put on the case, a module is complete.
In order to engineer a battery pack it is important to understand the fundamental building blocks, including the battery cell manufacturing process. This will allow you to understand some of the limitations of the cells and differences between batches of cells. Or at least understand where these may arise.