This study builds a 50 MW “PV + energy storage” power generation system based on PVsyst software. A detailed design scheme of the system architecture and energy storage capacity is proposed, which is applied to the design and optimization of the electrochemical energy storage system of photovoltaic power station.
When estimating the cost of the “photovoltaic + energy storage” system in this project, since the construction of the power station is based on the original site of the existing thermal power unit, it is necessary to consider the impact of depreciation, site, labor, tax and other relevant parameters on the actual cost.
In the design of the “photovoltaic + energy storage” system construction scheme studied, photovoltaic power generation system and energy storage system cooperate with each other to complete grid-connected power generation.
In 2023, global cumulative solar PV capacity amounted to 1,624 gigawatts, with roughly 447 gigawatts of new PV capacity installed in that same year. The growth in the solar PV use represents a shift of global markets towards renewable and distributed energy technologies.
The simulation test also reveals the important role of energy storage unit in power grid demand peaking and valley filling, which has an important impact on balancing the instability of photovoltaic power generation and improving the system response ability. 1. Introduction
Other storage includes compressed air energy storage, flywheel and thermal storage. Hydrogen electrolysers are not included. Global installed energy storage capacity by scenario, 2023 and 2030 - Chart and data by the International Energy Agency.