These modules are connected by inlet and outlet pipes, controlled by expansion valves, pumps, and three-state pressure switches. The previous section proposes the working principle of new energy vehicle batteries and BTM schemes. But the battery’s temperature can rise during the charging and discharging process or exposure to the sun.
Lithium batteries have become the main choice for the next generation of new energy vehicles due to their high energy density and battery life. However, the continued advancement of lithium-ion batteries for new energy vehicle battery packs may encounter substantial constraints posed by temperature and safety considerations.
This article offers a summary of the evolution of power batteries, which have grown in tandem with new energy vehicles, oscillating between decline and resurgence in conjunction with industrial advancements, and have continually optimized their performance characteristics up to the present.
To better explore the thermal management system of thermally conductive silica gel plate (CSGP) batteries, this study first summarizes the development status of thermal management systems of new energy vehicle power batteries to lay a foundation for subsequent research.
Currently, the battery systems used in new energy vehicles mainly include different types such as lithium iron phosphate, lithium manganese oxide, ternary batteries, and fuel cells, and the number of battery cells directly affects the vehicle's endurance. As the number of cells increases, the distance between cells is smaller.
To conduct the heat efficiently, the heat spreaders may be placed between batteries to enhance the heat transfer from the module to the cold plates. Because of the flat shape, the cold plates are widely used in battery module, consisting of prismatic cells instead of cylindrical cells.